User interface language: English | Español

HL Paper 3

Analysis of amino acid and protein concentration is a key area of biological research.

The titration curve of aqueous glycine zwitterions with aqueous sodium hydroxide is shown from pH 6.0 to 13.0. Refer to section 33 of the data booklet.

Deduce the pH range in which glycine is an effective buffer in basic solution.

[1]
a.

Enzymes are biological catalysts.

The data shows the effect of substrate concentration, [S], on the rate, v, of an enzyme-catalysed reaction.

Determine the value of the Michaelis constant (Km) from the data. A graph is not required.

[1]
b.

Outline the action of a non-competitive inhibitor on the enzyme-catalysed reaction.

[2]
c.

The sequence of nitrogenous bases in DNA determines hereditary characteristics.

Calculate the mole percentages of cytosine, guanine and thymine in a double helical DNA structure if it contains 17% adenine by mole.

[2]
d.



1.40 × 10−3 g of NaOH (s) are dissolved in 250.0 cm3 of 1.00 × 10−11 mol dm−3 Pb(OH)2 (aq) solution.

Determine the change in lead ion concentration in the solution, using section 32 of the data booklet.




1.57% of the mass of a rock weighing 46.5kg is uranium(IV) oxide, UO299.28% of the uranium atoms in the rock are uranium-238, U238.

Show that the mass of the 238U isotope in the rock is 0.639kg.

[2]
a.

The half-life of 238U is 4.46×109 years. Calculate the mass of 238that remains after 0.639kg has decayed for 2.23×1010 years.

[2]
b.

Outline a health risk produced by exposure to radioactive decay.

[1]
c.

Deduce the nuclear equation for the decay of uranium-238 to thorium-234.

[1]
d.

Thorium-234 has a higher binding energy per nucleon than uranium-238. Outline what is meant by the binding energy of a nucleus.

[1]
e.

Determine the nuclear binding energy, in J, of U238 using sections 2 and 4 of the data booklet.

The mass of the U238 nucleus is 238.050786amu.

[3]
f.



Alloys containing at least 60 % copper reduce the presence of bacteria on their surface.The percentage of copper in brass, an alloy of copper and zinc, can be determined by UV-vis spectrometry.

A sample of brass is dissolved in concentrated nitric acid and then made up to 250.0 cm3 with water before analysis.

Cu (s) + 4HNO3 (aq) → Cu(NO3)2 (aq) + 2NO2 (g) + 2H2O (l)

3Zn (s) + 8HNO3 (aq) → 3Zn(NO3)2 (aq) + 2NO (g) + 4H2O (l)

The concentration of copper(II) ions in the resulting solution is then determined from a calibration curve, which is plotted by measuring the light absorbance of standard solutions.

You may find the following chart and diagram helpful.

 

Outline why the initial reaction should be carried out under a fume hood.

[1]
a.

Deduce the equation for the relationship between absorbance and concentration.

[2]
b.

Copper(II) ion solutions are blue. Suggest, giving your reason, a suitable wavelength of light for the analysis.

[2]
c.

Outline how a solution of 0.0100 mol dm−3 is obtained from a standard 1.000 mol dm−3 copper(II) sulfate solution, including two essential pieces of glassware you would need.

[3]
d.

The original piece of brass weighed 0.200 g. The absorbance was 0.32.

Calculate, showing your working, the percentage of copper by mass in the brass.

[3]
e.i.

Deduce the appropriate number of significant figures for your answer in (e)(i).

[1]
e.ii.

Comment on the suitability of using brass of this composition for door handles in hospitals.

If you did not obtain an answer to (e)(i), use 70 % but this is not the correct answer.

[1]
f.i.

Suggest another property of brass that makes it suitable for door handles.

[1]
f.ii.

Titration is another method for analysing the solution obtained from adding brass to nitric acid.

Copper(II) ions are reduced to copper(I) iodide by the addition of potassium iodide solution, releasing iodine that can be titrated with sodium thiosulfate solution, Na2S2O3 (aq). Copper(I) iodide is a white solid.

4I (aq) + 2Cu2+ (aq) → 2CuI (s) + I2 (aq)

I2 (aq) + 2S2O32− (aq) → 2I (aq) + S4O62− (aq)

Suggest why the end point of the titration is difficult to determine, even with the addition of starch to turn the remaining free iodine black.

[1]
g.



Gasoline (petrol), biodiesel and ethanol are fuels.

[U.S. Department of Energy. https://afdc.energy.gov/] 

Calculate the energy released, in kJ, from the complete combustion of 5.00dm3 of ethanol.

[1]
a.

State a class of organic compounds found in gasoline.

[1]
b.

Outline the advantages and disadvantages of using biodiesel instead of gasoline as fuel for a car. Exclude any discussion of cost.

[4]
c.

A mixture of gasoline and ethanol is often used as a fuel. Suggest an advantage of such a mixture over the use of pure gasoline. Exclude any discussion of cost.

 

[1]
d.

When combusted, all three fuels can release carbon dioxide, a greenhouse gas, as well as particulates. Contrast how carbon dioxide and particulates interact with sunlight.

[1]
e(i).

Methane is another greenhouse gas. Contrast the reasons why methane and carbon dioxide are considered significant greenhouse gases.

[2]
e(ii).

Suggest a wavenumber absorbed by methane gas.

[1]
e(iii).

Determine the relative rate of effusion of methane (Mr=16.05) to carbon dioxide (Mr=44.01), under the same conditions of temperature and pressure. Use section 1 of the data booklet.

[1]
e(iv).



Physical properties of elements vary according to atomic number. Sections 6 to 9 of the data
booklet list some of these properties.

Melting points and boiling points of elements 1 to 95

Deduce, giving a reason, the group of elements in the periodic table most likely to undergo sublimation.

[2]
a.

Describe the density trend across periods 4 and 5 of the periodic table.

[1]
b(i).

Suggest, with a reason, whether the lanthanoids or actinoids of the f-block would have the higher density.

[1]
b(ii).

Compare the ease of oxidation of s-block and d-block metals to their melting points and densities. Use section 25 of the data booklet.

[2]
b(iii).

Sketch how the first ionization energies of elements vary with their atomic radius.

[1]
b(iv).



A mixture of 0.100mol ethanal, 0.100mol ethanol and 0.200mol ethanoic acid is fractionally distilled.

Calculate the mole fraction of ethanal in the mixture.

[1]
a(i).

The vapour pressure of pure ethanal at 20°C is 101kPa.

Calculate the vapour pressure of ethanal above the liquid mixture at 20°C.

[1]
a(ii).

Describe how this mixture is separated by fractional distillation.

[2]
b.



This question is about a mug made of a lead alloy.

The rate of lead dissolving in common beverages with various pH values was analysed.

Identify the experiment with the highest rate of lead dissolving.

[1]
a.

Suggest why the relationship between time and lead concentration for Cola at 16 °C is not linear.

[1]
b(i).

Examine, giving a reason, whether the rate of lead dissolving increases with acidity at 18 °C.

[1]
b(ii).

Lead(II) chloride, PbCl2, has very low solubility in water.

PbCl2 (s) Pb2+ (aq) + 2Cl (aq)

Explain why the presence of chloride ions in beverages affects lead concentrations.

[2]
c(i).

A mean daily lead intake of greater than 5.0 × 10−6 g per kg of body weight results in increased lead levels in the body.

Calculate the volume, in dm3, of tap water from experiment 8 which would exceed this daily lead intake for an 80.0 kg man.

[2]
c(ii).